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1. Introduction: 

The nonlinear Schrödinger equation (NLSE) is frequently utilized in analyzing the nonlinear dynamics of deep-water waves due 

to its capability to accurately describe sideband instabilities. Typically, capillary-gravity waves arise from wind-induced shear 

flows near the water's surface, causing these waves to propagate within a vortical environment. Such waves significantly impact 

the formation and growth of wind waves, influencing ocean surface stress and consequently affecting momentum exchange 

between the ocean and the atmosphere. An accurate depiction of surface stress is essential for modeling and forecasting oceanic 

wave dynamics. Many researchers have explored the instability of finite amplitude capillary-gravity waves. Djordjevic and 

Redekopp [1], along with Hogan [2], analyzed cubic nonlinear envelope equations for both finite and infinite water depths, 

respectively, addressing the sideband instability (Benjamin-Feir instability) associated with progressive capillary-gravity waves. 

Dhar and Das [3] focused on a fourth-order nonlinear evolution equation (NLEE) for two interacting surface capillary-gravity 

waves on deep water, subsequently conducting stability analyses for uniform waves influenced by a second uniform wave. 

Debsarma and Das [4] derived two coupled fourth-order NLEEs that include the effects of a thin thermocline on deep-water 

capillary-gravity waves, subsequently reducing these coupled equations into a single equation under conditions of oblique plane 

wave perturbations to analyze uniform wave stability. Trulsen and Dysthe [5] formulated a higher-order NLEE to describe broader 

bandwidth surface gravity waves on deep water, explicitly considering wave bandwidth and nonlinearity scales as O(ϵ^(1/2) ) and 

O(ϵ), respectively. Adopting the scaling framework introduced by Trulsen and Dysthe [5], finite depth, deep water, and infinite 

depth scenarios correspond to (kh)^(-1) being O(1),O(ϵ), and 0, respectively. 

 

This paper expands on Trulsen and Dysthe's [5] methodology by integrating capillary effects. The primary objective is to derive 

an advanced higher-order NLEE applicable to broader bandwidth conditions and formulate a weakly nonlinear theoretical model 

for capillary-gravity waves in deep water. 
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propagating on deep water are examined through the framework of a 

higher-order nonlinear evolution equation de-signed to capture broader 
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realistic oceanic wave conditions. 

https://www.swamivivekanandauniversity.ac.in/jasr/
https://www.swamivivekanandauniversity.ac.in/jasr/
mailto:tanmoypal@svu.ac.in


 

2 

 

 

2. The Governing Equations and The Fourth-order Evolution Equation 

 

The governing equations for surface capillary-gravity waves in an inviscid, incompressible, and irrotational fluid of uniform 

depth are formulated as follows: 

∇2𝜙 = 0 for  − ℎ < 𝑧 < 𝜂(𝑥, 𝑦, 𝑡)          

 (1) 

where 𝜙(𝑥, 𝑦, 𝑧, 𝑡) denotes the velocity potential of the fluid. 

At the free surface 𝑧 = 𝜂, the kinematic boundary condition is expressed by 
𝜙𝑧 − 𝜂𝑡 = 𝜙𝑥𝜂𝑥 + 𝜙𝑦𝜂𝑦 at 𝑧 = 𝜂          

 (2) 

The dynamic boundary condition at 𝑧 = 𝜂 incorporates both gravitational and capillary effects, written as 

𝜙𝑡 + 𝜂 = −
1

2
(∇𝜙)2 + 𝜅

𝜂𝑥𝑥+𝜂𝑦𝑦+𝜂𝑥
2𝜂𝑥𝑥−2𝜂𝑥𝜂𝑦𝜂𝑥𝑦+𝜂𝑦

2𝜂𝑦𝑦

(1+𝜂𝑥
2+𝜂𝑦

2)3/2
        

 (3) 

At the rigid bottom 𝑧 = −ℎ, the impermeability condition is 

𝜙𝑧 = 0,  𝑧 = −ℎ            

 (4) 

Here, 𝜙(𝑥, 𝑦, 𝑧, 𝑡) represents the velocity potential and 𝜂(𝑥, 𝑦, 𝑡) denotes the free surface displacement. 𝜌 is the fluid density, 𝑔 is 

the gravitational acceleration, and 𝑇 is the surface tension coefficient. The gradient operator is given by 

∇= (
∂

∂𝑥
,

∂

∂𝑦
,

∂

∂𝑧
). 

The system is non-dimensionalized through the following transformations: 

�̃� =
𝑘0

3

𝑔
𝜙, 𝜂 = 𝑘0𝜂, (�̃�, �̃�, �̃�) = (𝑘0𝑥, 𝑘0𝑦, 𝑘0𝑧), �̃� = 𝜔𝑡,  𝜅 =

𝑇𝑘0
2

𝜌𝑔
      

 (5) 

where 𝑘0 is a reference wavenumber, 𝜔 is the characteristic frequency, and 𝜅 quantifies the effect of surface tension. For 

simplicity, tildes are omitted in the remaining expressions. 

The general solution of the above equations can be decomposed as 

𝐵 = 𝐵‾ + ∑ [𝐵𝑝exp{𝑖𝑝(𝑘𝑥 − 𝜔𝑡)} + c.c.]∞
𝑝=1          

 (6) 

where 𝐵 denotes either 𝜙 or 𝜁, 𝐵𝑝 are the harmonic amplitudes, 𝑘 and 𝜔 represent the wavenumber and frequency of the 

primary wave, and c.c. indicates complex conjugate terms. 

The slow modulation of wave amplitudes is described by the slow drift term 𝜙‾  and the harmonic components 𝜙𝑝 , 𝜂𝑝, which 

depend on the slow spatial variables 𝜖𝑥, 𝜖𝑦, 𝜖𝑧 and slow time 𝜖𝑡, with 𝜖 being a small parameter indicating weak nonlinearity. 

We focus on the fourth-order nonlinear evolution equation (NLEE) applicable for waves with a broad spectral bandwidth under 

weakly nonlinear conditions. The scaling assumptions are 

𝑘0𝑎 = 𝑂(𝜖), 
|𝜅|

𝑘0
= 𝑂(𝜖), (𝑘0ℎ)−1 = 𝑂(𝜖)         

 (7) 

The linear dispersion relation for the primary wave mode (𝑙 = 0) is given by 

𝑓(𝜔, 𝑘, 𝑙) = 𝜔 − √𝑘2 + 𝜅[1 + (𝑘2 + 𝑙2)]2 = 0         

 (8) 

where 𝜔 and 𝑘 denote the frequency and wavenumber of the carrier wave, respectively. 
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By employing the standard analytical technique developed by Dhar and Das [6], we derive the fourth-order coupled NLEEs 

governing the free surface displacement 𝜁, where 𝜂 = 𝜂11 + 𝜖𝜂12, and the mean flow component 𝜙‾  is described as 

𝑖 (
∂𝜂

∂𝜏
+ 𝑐𝑔

∂𝜂

∂𝑥
) − 𝛾1

∂2𝜂

∂𝑥2
+ 𝛾2

∂2𝜂

∂𝑦2
+ 𝑖 (𝛾3

∂3𝜂

∂𝑥3
+ 𝛾4

∂3𝜂

∂𝑥 ∂𝑦2
) = 𝜇1|𝜂|2𝜂∗ + 𝑖 (𝜇2|𝜁|2 ∂𝜂

∂𝑥
+ 𝜇3𝜂2 ∂𝜂∗

∂𝑥
) + 𝜂

∂𝜙‾

∂𝑥
   

 (9) 

The equation for the slow potential 𝜙‾  satisfies Laplace’s equation within the fluid domain: 

∇2𝜙‾ = 0,  for  − ℎ < 𝑧 < 0          

 (10) 

At the free surface 𝑧 = 0, the vertical derivative of 𝜙‾  is related to the surface elevation by 

∂𝜙‾

∂𝑧
= 2

∂

∂𝑥
(|𝜂|2),  𝑧 = 0           

 (11) 

At the bottom boundary 𝑧 = −ℎ, the vertical derivative of 𝜙‾  vanishes: 

∂𝜙‾

∂𝑧
= 0,  𝑧 = −ℎ            

 (12) 

When 𝜅 = 0, equation (9) reduces exactly to equation (10) found in the work of Trulsen and Dysthe [5]. Generally, it is assumed 

that both wave steepness and spectral bandwidth are of the same order, 𝑂(𝜖), allowing the nonlinear and dispersive effects to 

balance at the fourth-order level, corresponding to 𝑂(𝜖4). 

 

3. Stability Analysis: 
 

A uniform wave train solution to NLEEs is expressed as 

𝜂 =
𝜂0

2
𝑒−𝑖𝜇1𝜂0

2𝑡/4, �̅� = 𝜙0,                (13) 

where 𝜂0, 𝜙0 are real constants. 

Next, we introduce small perturbations on this uniform wave train, written as 

𝜂 =
𝜂0

2
(1 + 𝜂′)𝑒𝑖(𝜃′−∆𝜔𝑡), �̅� = 𝜙0(1 + 𝜙′),          (14) 

where 𝜂′, 𝜃′  denote small amplitude and phase perturbations, and 𝜙′ represents a small fluctuation in �̅�. By substituting 

expression (14) into equation (9), we obtain a system of two linearized equations in terms of 𝜂′ and 𝜃′. We then consider plane 

wave solutions of these perturbations, given by 

(
𝜂′

𝜃′) = (
�̂�

𝜃
) 𝑒𝑖(𝜆𝑥+𝜇𝑦−Ω𝑡) + 𝑐. 𝑐.           (15) 

𝜙′ = 𝜙 ̂{𝑒𝑖(𝜆𝑥+𝜇𝑦−Ω𝑡) + 𝑐. 𝑐. }
cos �̅�(𝑧+ℎ)

cosh(�̅�ℎ)
,   �̅�2 = 𝜆2 + 𝜇2,         (16) 

Here, 𝜆, 𝜇 are the perturbation wavenumbers and Ω is the perturbed frequency, which are related through the following 

nonlinear dispersion relation: 

{𝑆1̅ +
(𝜇2+𝜇3)

4
𝜂0

2𝜆} {𝑆1̅ +
(𝜇2−𝜇3)

4
𝜂0

2𝜆} = 𝑆2̅ {𝑆2̅ −
𝜇1

2
𝜂0

2 +
𝜆2𝜂0

2

�̅� tanh(�̅�ℎ)
},        (17) 

where 𝑆1̅ = Ω − 𝑐𝑔𝜆 + 𝛾3𝜆3 + 𝛾4𝜆𝜇2 and 𝑆2̅ = 𝛾1𝜆2 − 𝛾2𝜇2 and 𝑐𝑔 represents the group velocity of the carrier wave. 

Solving equation (17) leads to 

𝑆1̅ = −
𝜇2

4
𝜂0

2𝜆 ± √𝑆2̅ {𝑆2̅ −
𝜇1

2
𝜂0

2 +
𝜆2𝜂0

2

�̅� tanh(�̅�ℎ)
}          (18) 

From equation (18), instability occurs if 

𝑆2̅ {𝑆2̅ −
𝜇1

2
𝜂0

2 +
𝜆2𝜂0

2

�̅� tanh(�̅�ℎ)
} < 0           (19) 

Whenever condition (19) holds, the perturbed frequency Ω becomes complex, and the corresponding instability 

growth rate is determined by the imaginary component Ω𝑖 , given by  

Ω𝑖 = √(𝛾1𝜆2 − 𝛾2𝜇2) (
𝜇1

2
𝜂0

2 − 𝛾1𝜆2 + 𝛾2𝜇2 −
𝜆2𝜂0

2

�̅� tanh(�̅�ℎ)
).        

 (20) 

 

4. Higher-order Evolution Equation for Broader Bandwidth 
To achieve improved spectral resolution, we follow the approach of Trulsen and Dysthe [5] and apply the following scaling relations: 

𝑘0𝐴 = 𝑂(𝜖), 
|𝜅|

𝑘0
= 𝑂(𝜖1/2), (𝑘0ℎ)−1 = 𝑂(𝜖1/2)         (21) 
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Here, we utilize similar harmonic expansions, as in (6), for the velocity potential 𝜙 and the free surface elevation 𝜂. In this context, 

𝜙𝑝, 𝜂𝑝, 𝜙‾, 𝜂0 (for 𝑝 = 1,2, …) are now dependent on the slowly varying modulation variables 𝜖1/2𝑡, 𝜖1/2𝑥, 𝜖1/2𝑦, while 𝜙‾  also evolves 

over a slightly faster scale characterized by 𝜖1/2. 

Next, we expand the perturbations using the following series: 

𝐸1 = ∑ 𝜖𝑝/2
𝑝 𝐸1𝑝 , 𝐸2 = ∑ 𝜖𝑝/2

𝑝 𝐸2𝑝           (22) 

where 𝐸𝑗  represents 𝐵𝑗  and 𝜁𝑗, and 𝐵𝑗 = (𝜙𝑗 , 𝜂𝑗),  𝑗 = 1,2. 

In this formulation, we maintain the same order of nonlinearity as in equation (9) but exclude quartic nonlinear terms, meaning all 

fourth-order contributions are neglected. This justifies constructing the new evolution equation for broader bandwidth limited to 

order 𝑂(𝜖7/2). 

Following the perturbation procedure similar to Dhar and Das [6], we ultimately derive the coupled nonlinear evolution equations 

(NLEEs) for broader bandwidth as 

𝑖 (
∂𝜂

∂𝜏
+ 𝑐𝑔

∂𝜂

∂𝑥
) − 𝛾1

∂2𝜂

∂𝑥2 + 𝛾2
∂2𝜂

∂𝑦2 + 𝑖 (𝛾3
∂3𝜂

∂𝑥3 + 𝛾4
∂3𝜂

∂𝑥 ∂𝑦2)  

+𝛾5
∂4𝜂

∂𝑥4 + 𝛾6
∂4𝜂

∂𝑥2 ∂𝑦2 + 𝛾7
∂4𝜂

∂𝑥3 ∂𝑦
+ 𝛾8

∂4𝜂

∂𝑥 ∂𝑦3  

+𝑖 (𝛾9
∂5𝜂

∂𝑥5 + 𝛾10
∂5𝜂

∂𝑥3 ∂𝑦2) = 𝜇1|𝜂|2𝜂∗ + 𝑖 (𝜇2|𝜂|2 ∂𝜂

∂𝑥
+ 𝜇3𝜂2 ∂𝜂∗

∂𝑥
) + 𝜂

∂𝜙‾

∂𝑥
       (23) 

The governing equation for 𝜙‾  is 

∇2𝜙‾ = 0, −ℎ < 𝑧 < 0            (24) 

At the free surface 𝑧 = 0, the vertical derivative of 𝜙‾  satisfies 

∂𝜙‾

∂𝑧
= 2

∂

∂𝑥
(|𝜂|2),  𝑧 = 0            (25) 

And at the bottom boundary 𝑧 = −ℎ: 

∂𝜙‾

∂𝑧
= 0,  𝑧 = −ℎ             (26) 

The coefficients 𝛾𝑖 , 𝜇𝑖 used in these equations are detailed in the Appendix. 

In this broader bandwidth NLEE, we assume the wave steepness scales as 𝑂(𝜖), while the bandwidth expands at 𝑂(𝜖1/2), ensuring 

the nonlinear and dispersive terms balance at 𝑂(𝜖7/2). 

In the absence of capillarity, the equation (23) reduces to an equation (21) of Trulsen and Dysthe [5]. 

Proceeding as in section 3, we obtain the nonlinear dispersion relation as follows 

{𝑅1 +
(𝜇2+𝜇3)

4
𝜂0

2𝜆} {𝑅1 +
(𝜇2−𝜇3)

4
𝜂0

2𝜆} = 𝑅2 {𝑅2 −
𝜇1

2
𝜂0

2 +
𝜆2𝜂0

2

�̅� tanh(�̅�ℎ)
},       (27) 

where 

 𝑅1 = Ω − 𝑐𝑔𝜆 + 𝛾3𝜆3 + 𝛾4𝜆𝜇2 − 𝛾8𝜆5 − 𝛾9𝜆3𝜇2 − 𝛾10𝜆𝜇4,         (28) 

 𝑅2 = 𝛾1𝜆2 − 𝛾2𝜇2 + 𝛾5𝜆4 + 𝛾6𝜆2𝜇2 + 𝛾7𝜇4.          (29) 

The solution of (27) is given by 

𝑅1 = −
𝜇2

4
𝜂0

2𝜆 ± √𝑅2 {𝑅2 −
𝜇1

2
𝜂0

2 +
𝜆2𝜂0

2

�̅� tanh(�̅�ℎ)
}          (30) 

Using (28) the equation (27) can be expressed as  

Ω = 𝑐𝑔𝜆 − 𝛾3𝜆3 − 𝛾4𝜆𝜇2 + 𝛾8𝜆5 + 𝛾9𝜆3𝜇2 + 𝛾10𝜆𝜇4 −
𝜇2

4
𝜁0

2𝜆 ± √𝑅2 {𝑅2 −
𝜇1

2
𝜁0

2 +
𝜆2𝜁0

2

�̅� tanh(�̅�ℎ)
}     (31) 

If we set 𝜅 = 0, then the equation (31) reduces to an equation equivalent to equation (25) of Trulsen and Dysthe [5]. 

It follows from (31) that for instability we have 

𝑅2 {𝑅2 −
𝜇1

2
𝜂0

2 +
𝜆2𝜂0

2

�̅� tanh(�̅�ℎ)
} < 0           (32) 

The instability growth rate Ω𝑖, which is the imaginary part of the perturbed frequency Ω, is given by 

 Ω𝑖 = √𝑅2 (
𝜇1

2
𝜂0

2 − 𝑅2 −
𝜆2𝜂0

2

�̅� tanh(�̅�ℎ)
)           (33) 
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Fig-1: Plot of growth rate of instability Ω𝑖 against 𝜆 for ℎ = 6 and two values of  ; (a) 𝜂

0
= 0.2 , (b) 𝜂

0
= 0.4 .  

 
Fig-2: The (𝜆, 𝜇) instability diagrams for ℎ = 6 ; (a) 𝜅 = 0, 𝜂

0
= 0.15 , (b) 𝜅 = 0.035, 𝜂

0
= 0.15 , (c) 𝜅 = 0, 𝜂

0
= 0.25 , (d) 𝜅 = 0.035, 𝜂

0
= 0.25 ; Blue 

regions corresponding to new broader-banded result and red regions to narrow-banded result. 

 

The graphical representation of the instability growth rate (GRI), denoted by Ω𝑖 and calculated from equation (33), is presented in 

Fig. 1. This plot shows the variation of Ω𝑖 with respect to 𝜆 for the broader bandwidth case, considering ℎ = 6 along with different 

values of the capillarity parameter 𝜅 and wave steepness 𝜂0. 

It is observed that capillary effects lead to a noticeable reduction in the instability growth rate, thereby exerting a stabilizing effect 

on the system. Furthermore, the GRI exhibits a significant increase as the wave steepness 𝜂0 becomes larger. 

According to the instability criterion derived in equation (32), the corresponding modulational instability zones in the (𝜆, 𝜇) plane 

are displayed in Fig. 2 for two specific values of wave steepness, namely 𝜂0 = 0.15 and 𝜂0 = 0.25, along with 𝜅 = 0 and 𝜅 = 0.035. 

From these results, it is evident that both capillarity and wave steepness play a significant role in altering the characteristics and 

extent of the instability regions. 
 

 

5. Numerical validation 
We employ the Chebyshev spectral collocation method combined with Fourier techniques to numerically investigate the dynamics of 

surface capillary-gravity waves governed by the Laplace equation with nonlinear free-surface boundary conditions. Time integration 

is performed using a fourth-order Runge-Kutta scheme, ensuring stability and accuracy in the temporal evolution. The numerical 

simulations reveal the significant influence of capillarity on wave dynamics, demonstrating an increase in wave frequency with higher 

surface tension coefficients. Additionally, time-evolution studies of surface profiles highlight the transition from gravity-dominated 

slow oscillations to capillarity-dominated high-frequency, rapidly decaying waves. Modulational instability analysis confirms that 

capillarity enhances the growth rate of perturbations, leading to faster amplification of sideband modes. Spectral energy distribution 

further indicates a pronounced nonlinear energy transfer toward higher harmonics in the presence of strong capillarity. Overall, this 

numerical framework provides a robust approach to capturing both the dispersive and modulational characteristics of surface 

capillary-gravity waves. 

 

 

 



 

6 

 

 

Fig-3: Effect of capillary on wave frequency. 

 

Fig.3 illustrates the relationship between the wave frequency 𝜔 and the surface tension coefficient 𝑇, highlighting the impact of 

capillarity on wave dynamics. It is observed that as the value of 𝑇 increases, there is a marked increase in the corresponding wave 

frequency 𝜔. In the absence of capillary effects, i.e., when 𝑇=0, the frequency closely follows the theoretical prediction for pure gravity 

waves, where surface tension does not influence wave propagation. However, with the introduction and gradual increase of capillarity, 

the wave frequency rises substantially, deviating from the gravity wave prediction. This effect becomes particularly prominent in the 

regime of short wavelengths, corresponding to higher wavenumbers 𝑘. For these shorter waves, surface tension exerts a dominant 

force, resulting in a significant elevation of frequency. The graph effectively demonstrates that capillary forces play a crucial role in 

modifying wave characteristics, especially at smaller scales where their influence is more pronounced.  

 

 
 

Fig-4: Effect of capillary on surface profile. 

 

The influence of surface tension on the evolution of the surface wave profile is shown in Fig. 4. As the surface tension coefficient 𝑇 

increases, the damping effect on wave amplitude becomes more pronounced, leading to a more rapid attenuation of wave height over 

time. Elevated surface tension contributes to a smoother wave surface by significantly reducing the peak amplitudes of oscillations. 

Furthermore, the enhanced capillarity acts to suppress smaller-scale surface disturbances, effectively stabilizing short-wavelength 

undulations. This stabilization promotes the formation of smoother profiles characterized by higher-frequency, less energetic wave 

motions. Overall, increasing 𝑇not only diminishes the energy of surface waves but also alters the dominant frequency characteristics, 

favoring a more uniform and refined surface structure. 

 



 

7 

 

 
Fig-5: Surface profile evolution for 𝑇 = 0, 0.01, 0.1, 0.5. 

 

Fig. 5 illustrates the evolution of the surface wave profile under varying effects of capillarity. In the top-left panel, where the surface 

tension parameter 𝑇 =  0, the wave behavior is governed purely by gravity, resulting in slower oscillations with relatively large 

amplitudes and gradual temporal evolution. Introducing a slight capillary influence at 𝑇 =  0.01 (top-right) leads to a subtle increase 

in oscillation frequency accompanied by a modest reduction in wave amplitude, indicating the initial onset of capillarity effects. As the 

capillary contribution becomes more pronounced at 𝑇 =  0.1 (bottom-left), the wave frequency increases more noticeably and the 

amplitude decays at a faster rate, suggesting a significant interaction between gravitational and capillary forces. Finally, in the bottom-

right panel with 𝑇 =  0.5, the system is dominated by capillarity, characterized by rapid high-frequency oscillations and a swift 

reduction in amplitude, clearly depicting the transition to a capillarity-dominant wave regime. 

 

 
Fig-5: Spectral energy distribution for 𝑇 = 0, 0.5. 

 

Figure 6 illustrates the contrasting energy distribution patterns for two distinct regimes of wave dynamics. In the left panel, 

corresponding to 𝑇 =  0, where gravitational effects dominate, the spectral energy remains primarily localized around the initial carrier 

wavenumber 𝑘. This reflects a narrow-banded wave evolution with minimal energy transfer to higher harmonics, indicating weak 

nonlinear interactions and stable wave propagation. In contrast, the right panel, representing 𝑇 =  0.5 with capillarity as the dominant 

force, reveals a significant redistribution of energy towards higher wavenumbers. A rapid and extensive energy transfer is observed, 

characterized by a pronounced excitation of multiple harmonic modes. This behavior highlights the presence of strong nonlinear 

energy cascades and enhanced wave interactions, leading to notable spectral broadening. The comparison clearly demonstrates how 

capillarity intensifies the complexity of wave dynamics by promoting broader spectral energy spread and facilitating more vigorous 

nonlinear wave interactions. 
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6. Conclusions 
 

This study focuses on a modified NLEE tailored for broader bandwidth capillary-gravity waves on deep water. The incorporation 

of additional linear terms within the modified NLEE significantly improves the spectral bandwidth resolution. This enhancement 

helps overcome a primary limitation associated with conventional band-restricted NLEE models, making the newly derived 

equation more suitable for numerical simulations of weakly nonlinear surface waves. Using this improved NLEE, the range of 

instability regions is notably reduced. The instability analysis of uniform wave trains derived from the broader-band formulation 

shows improved accuracy compared to narrow-band approaches and closely aligns with the exact outcomes reported by Mclean 

et al. [7] in cases without capillarity effects. Consequently, the present equation, offering adequate spectral width, is anticipated to 

be highly effective for practical ocean wave applications. Future research could involve generating contour plots of the growth rate 

index (GRI) in the (λ,μ) plane for both finite and infinite water depths, as well as exploring how instability regions and peak GRI 

vary with wave steepness in infinite depth scenarios. 

 

Appendix 
 

γ1 =
𝐵

2σℎσ
2 (1+κ)

, γ2 =
1+3κ

σℎσ
2 , γ3 =

2𝐴𝐵−κℎσ
4

2σℎσ
4 (1+κ)

, γ4 =
(1−3κ)ℎσ

2 −2(1+3κ)𝐴

4σℎσ
2 (1+κ)

, 

γ5 =
𝐴4+4𝐴2𝐵−6𝐴2κℎσ

2 −2𝐴κℎσ
4 +9κ2ℎσ

2

2σℎσ
6 (1+κ)

, 𝛾6 =
(1−3𝜅)𝐴ℎ𝜎

2 −(1+3𝜅)(2𝐴2+𝐵)−{(ℎ𝜎}4/2)

2𝜎ℎ𝜎
4 (1+𝜅)

 ,  

γ7 =
2(1+3κ)2+(1−3κ)ℎσ

2

16σℎσ
2 (1+κ)

 , 𝛾8 =
−2𝐴𝐵(4𝐴2+3𝐵)+4𝐵𝜅ℎ𝜎

4 +4𝑢𝐴𝜅ℎ𝜎
5 +2{ℎ𝑘

2−(𝑢2−3𝜅)ℎ𝜎
2 }𝜅ℎ𝜎

4

2𝜎ℎ𝜎
8 (1+𝜅)

 , 

γ9 =
(1+3κ)(4𝐴3+6𝐴𝐵−κℎσ

4 )−(1−3κ)(2𝐴2ℎσ
2 +𝐵ℎσ

2 )+𝐴ℎσ
4 −{(ℎσ}6/2)

2σℎσ
6 (1+κ)

,  

𝛾10 =
−2(1−3𝜅)𝐴ℎ𝜎

2 −12(1+3𝜅)2𝐴+4(1+3𝜅)(1−3𝜅)ℎ𝜎
2 +3(1−𝜅)ℎ𝜎

4

16𝜎ℎ𝜎
4 (1+𝜅)

, 𝜇1 =
1

𝜎ℎ𝜎
2 {

4(1+𝜅)(2−𝜅)

1−2𝜅
− 3𝜅} 

μ2 =
3(4κ4+4κ3−9κ2+κ−8)

σℎσ
2 (1+κ)(1−2κ)2 , 𝜇3 =

(2𝜅2+𝜅+8)(1−𝜅)

2𝜎ℎ𝜎
2 (1+𝜅)(1−2𝜅)

, 𝐴 = 𝑓𝑘, 𝐵 = 𝑓𝑘
2 − 3𝜅𝑓𝜎

2, 𝑓𝑘 =
𝜕𝑓

𝜕𝑘
, 𝑓𝜎 =

𝜕𝑓

𝜕𝜎
. 
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